Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jia Ni, Yao-Wen Chen* and Haidan Zhang

Central Laboratory of Shantou University, Shantou, Guangdong 515063, People's Republic of China

Correspondence e-mail: jni@stu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.035 wR factor = 0.077 Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Chloro{2-[tris(hydroxymethyl)methyliminomethyl]phenolato}copper(II)

In the title compound, $[Cu(C_{11}H_{14}NO_4)Cl]$, the tridentate Schiff base ligand coordinates to the metal atom through the N and O atoms, forming a square-planar coordination geometry.

Received 13 July 2005 Accepted 10 August 2005 Online 28 September 2005

Comment

The chemistry of transition metal ion complexes of hydroxy (aryl and alkyl OH) rich molecules containing imine/amine groups is important in biomimetic chemistry (Cornman *et al.*, 1992). Many complexes of this kind have been reported (Asgedom & Rao, 1996; Dey, Rao, Saarenketo & Rissanen, 2002; Dey, Rao, Saarenketo, Rissanen & Kolehmainen, 2002). We report here a new copper(II) complex, (I), with a tridentate Schiff base ligand.

In compound (I), the Cu^{II} center is four-coordinated in a square-planar configuration by one N and two O atoms of the Schiff base ligand and one Cl atom. The Cu–O bond lengths

scheme. Displacement ellipsoids are drawn at the 50% probability level.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

H atoms are drawn as spheres of arbitrary radii.

metal-organic papers

are 1.885 (2) and 1.979 (2) Å; the shorter distance between copper and the phenoxy O atom indicates that the electronegativity of atom O1 is stronger than that of the other O atoms of the ligand.

Experimental

The ligand 2-[tris(hydroxymethyl)methyliminomethyl]phenol was prepared according to the literature procedure of Asgedom et al. (1996). Cuprous chloride (0.105 g, 0.5 mmol) was added to a solution of the ligand (0.111 g, 0.5 mmol) in water (10 ml). After stirring for a short time, the solution turned dark green. The filtrate was left for 2 d at room temperature and green needle-shaped crystals were obtained in about 62% yield.

Crystal data

 $[Cu(C_{11}H_{14}NO_4)Cl]$ $M_r = 323.22$ Tetragonal, $P\overline{4}2_1c$ a = 16.7345 (6) Å c = 8.7634 (6) Å V = 2454.1 (2) Å³ Z = 8 $D_x = 1.750 \text{ Mg m}^{-3}$ Data collection

Bruker APEX area-dectector diffractometer φ and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.679, T_{\max} = 0.873$ 20984 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ wR(F²) = 0.077 S = 1.012918 reflections 165 parameters H-atom parameters constrained Cell parameters from 1879 reflections $\theta = 2.4 - 23.3^{\circ}$ $\mu = 2.00 \text{ mm}^{-1}$ T = 293 (2) K Needle, green $0.21 \times 0.09 \times 0.07 \text{ mm}$ 2010 · 1

Mo $K\alpha$ radiation

2661 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.049$ $\theta_{\text{max}} = 27.9^{\circ}$ $h = -21 \rightarrow 21$
$\begin{split} R_{\rm int} &= 0.049 \\ \theta_{\rm max} &= 27.9^{\circ} \\ h &= -21 \rightarrow 21 \end{split}$
$\theta_{\max} = 27.9^{\circ}$ $h = -21 \rightarrow 21$
$h = -21 \rightarrow 21$
$k = -21 \rightarrow 21$
$l = -11 \rightarrow 11$

 $w = 1/[\sigma^2(F_0^2) + (0.0354P)^2]$ + 1.812P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1265 Friedel pairs Flack parameter: 0.007 (15)

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.885 (2)	Cu1-O2	1.979 (2)
Cu1-N1	1.951 (2)	Cu1-Cl1	2.2366 (8)
O1-Cu1-N1	94.92 (10)	O1-Cu1-Cl1	93.56 (7)
O1-Cu1-O2	169.50 (10)	N1-Cu1-Cl1	171.25 (8)
N1-Cu1-O2	81.81 (10)	O2-Cu1-Cl1	90.22 (7)

H atoms were placed in idealized positions [N-H = 0.82 Å, C-H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$ and were included in the refinement in the riding-model approximation.

Data collection: SMART (Bruker, 2002): cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Central Laboratory of Shantou University for supporting this study.

References

Asgedom, G. & Rao, C. P. (1996). Inorg. Chem. 35, 5674-5683.

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cornman, C. R., Colpas, G. J., Hoeschele, J. D., Kampf, J. & Pecoraro, V. L. (1992). J. Am. Chem. Soc. 114, 9925-9933.

Dey, M., Rao, C. P., Saarenketo, P. K. & Rissanen, K. (2002). Inorg. Chem. Comm. pp. 380-383.

Dev, M., Rao, C. P., Saarenketo, P., Rissanen, K. & Kolehmainen, E. (2002). Eur. J. Inorg. Chem. pp. 2207-2215.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.